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Numerical solutions of the Navier-Stokes equations for steady axisymmetric flow in 
the Taylor experiment are presented. I n  the cases considered the annulus is so short 
that only one or two Taylor cells are present. The results are compared with a recent 
theoretical and experimental study by Benjamin & Mullin (1981). The qualitative 
picture of the flows possible proposed by Benjamin & Mullin is confirmed by the 
calculations, and the quantitative agreement with their experimental results is quite 
satisfactory. 

1. Introduction 
This paper is concerned with the flow in a Taylor apparatus where the length of 

the annulus is comparable to the difference between the outer and inner radii. All 
the flows considered have only one or two Taylor cells. Needless to say, the effect 
of the ends of the annulus is very important in this case. Consequently little help 
towards understanding these flows is given by most of the standard theory about the 
Taylor experiment (e.g. DiPrima 1981), in which theory the cylinders are assumed 
to be infinitely long. 

Schaeffer (1980) has analysed a model for boundary effects in the Taylor problem. 
His analysis was qualitative and he was primarily concerned with phenomena such 
as observed by Benjamin (19783) and by Mullin (1982) which depend on the way in 
which the number of cells present in the primary flow changes as the length of the 
cylinders increases. The primary flow may be defined as that produced by slowly 
increasing the speed of the inner cylinder from rest; all other flows are called 
secondary modes. Although Schaeffer did not consider the present case, his model 
is relevant, and Benjamin & Mullin (1981) have already used it,  together with a general 
theory of bifurcation phenomena in steady viscous-fluid flow developed by Benjamin 
(1976, 1978a, c), to interpret their experimental observations. They have given a 
reasonably complete qualitative account of the flows possible when the cylinders are 
very short. 

The purpose of this paper is to present numerical solutions of the Navier-Stokes 
equations for steady axisymmetric flow in the Taylor experiment when the cylinders 
are so short that only one or two Taylor cells are present. The results are compared 
with those obtained experimentally by Benjamin & Mullin (1981), and in view of the 
delicacy of the experiments one appreciates the quantitative agreement to be quite 
satisfactory. More importantly, precisely the same qualitative picture as that 
proposed by Benjamin & Mullin (1981) emerges from the numerical calculations. In  
particular, the general theory makes predictions about unstable flows, which cannot 
of course be observed but which are confirmed by the numerical results. 

The numerical approach adopted is to discretize the appropriate boundary-value 
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problem by the finite-element method and then to apply the methods of bifurcation 
theory to obtain multiple solutions of the equations as the Reynolds number and 
aspect ratio are varied. It should be stressed that separate solutions sometimes occur 
in close proximity and that a naive approach to the problem will a t  best be highly 
inefficient. 

In $2 the Benjamin theory will be summarized. The numerical methods will be 
described in $3, and the results obtained will be presented in $4. Finally, some 
conclusions are drawn in $ 5 .  

2. General theory 
We summarize here the general theory of bifurcation in steady viscous-fluid flow 

that was developed by Benjamin and specifically applied to single-cell flows by 
Benjamin & Mullin (1981). The theory applies to the Navier-Stokes equations in any 
bounded domain, and is concerned with the qualitative properties of the solution set 
as the Reynolds number R is varied. It is important to notice that this theory can 
also be applied to the finite-element discretization of the Navier-Stokes equations 
considered in this paper. (With non-homogeneous boundary conditions, however, 
some of the results apply only when the mesh is sufficiently fine.) Further, the 
Leray-Schauder index of a solution, as noted below, can be obtained as part of the 
solution procedure. This considerably simplifies the interpretation of the numerical 
results in terms of the general theory. Section 3 contains more details on this point. 

Let X denote the function space in which the solutions lie and S(R)  the set of 
solutions of the Navier-Stokes equations, with appropriate boundary conditions, 
when the Reynolds number is R. The main theoretical conclusions are as follows. 

(i) For any positive value of the Reynolds number R there is at least one solution 
of the steady Navier-Stokes equations (cf. Ladyzhenskaya 1969). For sufficiently 
small values of R this solution is unique and globally stable (Serrin 1959); any initial 
velocity field evolves towards the unique steady solution as time increases. 

(ii) A generic property of the solution set S(R)  is that its members are isolated in 
X for a particular value of R (Foias & Temam 1977). This implies that there is a 
finite number of solutions. Only under very special conditions it is possible to have 
a continuum of solutions (for more details see Benjamin 1978~).  

(iii) Except at singular points a t  which the number of solutions changes (e.g. 
bifurcation or turning points), each member of S(R) has an index i equal to 1 or - 1 
(the Leray-Schauder index). As R varies, i remains constant along a solution branch 
unless such a singular point is reached. With the same qualification, the index i is 
also constant with respect to changes in the domain and boundary data. 

(iv) For a given R, label the solutions by m = 1,2,  ..., k. Then 

k 
z im = 1. 

m-1 

Together with (iii) this implies that there is an odd number of solutions for any value 
of R for which the solution set S(R) contains no singular points. 

(v) Any solution with i = - 1 not at a singular point represents an unstable steady 
flow (Benjamin 1976, theorem 3). 

We turn now to the Taylor experiment with symmetric end conditions. We use 
cylindrical polar coordinates ( r ,  4, z )  with origin midway between the ends. The 
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FIGURE 1.  For caption see p. 222. 
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FIGURE 1.  Numerically calculated state diagrams. The vertical velocity at point (0.75,O) is plotted 
against Reynolds number for various aspect ratios; the dots indicate the calculated points. (a) 
r= 1.23, ( b )  1.26, ( c )  1.264, (d )  1.27. Cf. Benjamin & Mullin (1981, figure 6). 

corresponding velocity components are (ur, a$, a=). Following Benjamin (19786) we 
recognize two classes of symmetry : 

class (i) : (u,., uI ,  u,) = (even, even, odd) function of z ;  
class (ii) : (ur, u4, uz) = (odd, odd, even) function of z. 
It is easy to see that the primary flow, as defined in the second paragraph, belongs 

to class (i). Also any solution may be written in the form U,+ U,, where U, is a 
member of class (i) and U, a member of class (ii). Further, if U,+ U, is a solution, 
then so is U,- U,. A simple consequence is that  solutions either have streamline 
patterns which are symmetric about the mid-plane or else they occur in asymmetric 
pairs. Under these conditions a supercritical bifurcation is possible (cf. Werner & 
Spence 1983; Brezzi, Rappaz & Raviart 198lb). The most common form of 
bifurcation is the simple turning point or one-sided bifurcation. If two-sided 
bifurcations occur then they are typically transcritical or asymmetric (Benjamin 
1976). 

We can now outline the qualitative picture of the flows possible when the cylinders 
are short, proposed by Benjamin & Mullin (1981). For sufficiently short cylinders 
there is a stable primary flow which belongs to symmetry class (i) and has two Taylor 
cells. At a critical value R, of R, there is a supercritical bifurcation into a pair of 
single-cell flows. The two-cell flow exchanges stability with the single-cell flows in the 
usual fashion. A stable two-cell flow also exists for sufficiently large values of R, but 
loses stability as R is reduced to  a second critical value R, (> Rl). 

At larger cylinder lengths the single-cell flow becomes a genuine secondary mode 
in the sense that i t  is disconnected from the primary branch of solutions and cannot 
be generated by slowly increasing the speed of the inner cylinder. I n  this case the 
primary two-cell flow does not undergo a bifurcation. 

The sequence of events leading to  this change in the structure of the solution is 
shown in figure 1 .  In  practice the change occurs over a very short range of cylinder 
lengths. Benjamin & Mullin (1981) found that an increase of about 8 yo in the length 
covered the changes shown in figure 1.  As the length of the cylinders is increased the 
two bifurcations a t  A and B move closer together. The bifurcation a t  A becomes 
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subcritical, so giving rise to  hysteresis effects, and eventually coalesces with the one 
at B at  an aspect ratio slightly greater than that of figure 1 (c). The two bifurcating 
branches join together and separate from the primary flow as shown in figure 1 ( d ) .  
The values of the Leray-Schauder index associated with each of the solution branches 
are also shown in figure 1 .  Note again that solutions with index - 1 represent unstable 
steady flows which cannot be observed. 

Benjamin & Mullin (1981) determined the loci of the various bifurcation points 
shown in figure 1 ,  in the Reynolds-number/aspect-ratio plane. These points were 
determined by flow-visualization techiques, being the limiting values of Reynolds 
number for which a particular flow remains stable at a given aspect ratio. 

3. Governing equations and numerical methods 
Let rl and r2 be the radii of the inner and outer cylinders respectively and let 1 

be their length. Let Q be the angular speed of the inner cylinder, the outer cylinder 
being taken to be stationary. We use cylindrical polar coordinates (r*, #, z*) with the 
origin midway between the ends and denote the velocity by U* = (u:, us, u:). The 
equations for axisymmetric flow of a viscous fluid are 

In the above equations r,  z ,  U and p are given by 

where d = r2 - rl and p = rJd. The aspect ratio r = l / d  and the Reynolds number 
R = prl Qdlp ,  where p and p are the fluid density and viscosity respectively. Thus 
the problem has one dynamical parameter R and two geometrical parameters r 
and p. 

It is more usual to take the second geometrical parameter as the radius 
ratio = T1/r2 = p/(l +p). 

Equations (3.1)-(3.4) hold in the region 

D = ( ( r , z ) [ O  < r Q 1 ,  -0.5 < z Q 0.5). (3.5) 

The boundary conditions are that u, and u, are zero on the entire boundary of D, 
and that u# is zero on the outer cylinder and 1 on the inner cylinder. The simplest 
condition on the ends would be to impose u4 = 0. However, this implies a discontinuity 
in this component of velocity, which in turn implies an infinite rate of dissipation 
in a Newtonian fluid. Further, in any experiment the azimuthal velocity clearly 
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cannot have a discontinuity though the exact form i t  takes would be very difficult 
to determine. Fortunately the numerical results indicate that the exact form of this 
boundary condition only affects the flow locally (see $4) and so we assume that the 
azimuthal velocity on the ends increases from zero to one, at  the inner cylinder, over 
a short distance 6. A more complete discussion of this point is given by Benjamin 
& Mullin (1981). 

The starting point for a finite-element discretization of (3.1)-(3.4) is an integral 
formulation of the problem. We introduce the following notation: let L2(D) be the 
space of functions that are square-integrable over D ;  let W q 2 ( D )  be the space of 
functions whose generalized first derivatives lie in L2(D) ,  and let Wo.2(D) be that 
subspace of W1p2(D) whose elements vanish (weakly) on the boundary of D. Wv 2(D)3 
is the space of vector-valued functions each component of which is in W T ~ ( D ) .  

We introduce the following three functionals : 

Let OE W ,  2(D)3 be a vector-valued function that satisfies the boundary conditions 
of the problem. We can now state the appropriate integral form: 

Find U E  Wv 2((0)3, p E L2(D) such that 

(i) U -  OE Wo* 2(D)3,  (3.9) 

(ii) al (U;  V, V)+ao(U, V ) + b ( p ,  V) = 0 for all V E  fl~~(D)~, (3.10) 

(iii) b(q, U) = 0 for all qeL2(D) .  (3.11) 

For each h let w h  and &fh be two finite-dimensional spaces such that w h  c Wy 2(0)3, 

Let O h  E w h  be a vector-valued function that approximates the boundary conditions 
of the problem and satisfies b(1,  0,) = 0. The finite-element approximation of 

(i) Uh- O h E  wh,O, (3.12) 

M h  C L2(D) ; and let w h ,  0 = w h  fl q3 2(D)3. 

(3.9)-(3.11) is Simply to find U h E  w h ,  p h € & f h  such that 

(ii) a l ( U h ;  Uhj  V h ) + a O ( U h ,  V h ) + b ( p h ,  V h )  = 0 for all V h E  wh,O, (3.13) 

(iii) b(qh ,  U h )  = 0 for all q h E & f h .  (3.14) 

The space w h  is generated by nine-node isoparametric quadrilateral elements with 
biquadratic interpolation. The space Mh is generated by piecewise linear interpolation 
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on the same elements, the interpolation being, in general, discontinuous across 
element bmndaries. The parameter h is the length of the longest edge in the mesh. 
Examples of the use of this element can be h u n d  in Engleman et a2. (1982) and Cliffe, 
Jackson & Greenfield (1982). 

Equations (3.13) and (3.14) form a set of nonlinear equations for the parameters 
specifying the velocity and pressure. They depend on three scalar parameters R ,  r 
and p. Before describing the methods used to solve the equations we summarize their 
theoretical properties. These results are taken from Girault & Raviart (1979) and 
Brezzi, Rappaz & Raviart (1980, 1981a,b). 

If ( U, p )  is a solution of the Navier-Stokes equations away from a bifurcation point, 
the following error estimates hold : 

I I  u- Ufilll < Cl h2, (3.15) 

IIP-Pfillo < G h 2 .  (3.16) 

(Here norms for w1* and L2 are denoted by subscripts 1 and 0 respectively.) 
If for given r and p, (3.1)-(3.4) have a simple limit point (one-sided bifurcation) 

a t  ( Uo,po, Ro), then the discrete equations (3.13) and (3.14) also have a simple limit 
point at (uh, ,,, ph, o ,  Rh, o ) ,  which is close to ( Uo,po, B0). The following error estimates 

hold : IIUo- h , O I l l  < G h 2 ,  (3.17) 

IIpO-ph, 0110 < G4 h2, (3.18) 

lRO-Rh,Ol < c5 h4. (3.19) 

It is worth emphasizing the high order of convergence of the critical Reynolds number 
as the mesh is refined. 

In  general, a numerical approximation to a problem having a two-sided bifurcation 
need not also have bifurcation. However, in the special case of a symmetry-breaking 
bifurcation, the discrete problem also bifurcates (Brezzi et al. 1981 b )  and precisely 
the same error estimates may be established as for the simple limit point. 

We turn now to the methods used to solve equations (3.13) and (3.14). For 
convenience we denote the pair (uh, ph) by 42 and the equations by 

g@, R ,  r, P)  = 0. (3.20) 

A complete solution for axisymmetric flow in the Taylor problem consists of all 
42 that satisfy (3.20) for some values of R, r and p. Note that we cannot say 42 is 
a function of ( R ,  r, P, since, in general, there is more than one % satisfying (3.20), 
for each ( R ,  r, P,. The work of Benjamin (1978b), Benjamin & Mullin (1981, 1982) 
and Mullin (1982) has shown that the solution set becomes progressively more 
complex as R and r increase. Moreover, their work did not include a study of the 
effect of variations of p (or 7). It is clear, therefore, that  even the restricted case of 
steady axisymmetric flow in the Taylor experiment poses a very formidable numerical 
problem. In  this paper we restrict our attention to the case where pis fixed, p = 1.597 
(7 = 0.615), and 0.6 < r d 1.51. 

For the rest of the paper, pwill always have the value 1.597 and so we drop it from 
(3.20). If we also fix I', then (3.20) is an equation with a single scalar parameter. 
Further, we know that for small values of R the solution is unique ($2, point (i)). 
Newton's method can be used to solve the equations under these conditions, and then 
Euler-Newton continuation can be used to trace out the behaviour as R is increased. 
Newton's method defines the following iterates qn : 

(3.21) 
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The continuation procedure provides a good initial guess for the next value of R, i.e. 

(3.22) 
a% 

%(R+6R) = %(R)+ -6R, 
aR 

(3.23) 

The linear system in (3.21) is solved by decomposing ag/a% into triangular factors 

_ -  ag - PLUQ, 
a% (3.24) 

where P, Q are permutation matrices, and L and U are lower and upper triangular 
matrices respectively, and then solving two triangular systems. The L U decomposition 
is carried out by the frontal algorithm with a suitable pivoting procedure to  maintain 
numerical stability (Duff 1981). Once the factors have been calculated, subsequent 
systems such as (3.23) may be solved relatively cheaply. One further benefit comes 
from this method of solution, namely the determinant of ag/a% may be easily 
calculated as 

det - = det (P) det ( L )  det (U)  det (a), (3 
which is just the product of the pivots with appropriate changes of sign to  account 
for row and column interchanges during the pivoting procedure. The sign of this 
determinant is, by definition, the index of the finite-dimensional problem which, for 
a sufficiently fine mesh, will agree with the Leray-Schauder index of the continuous 
problem (Lloyd 1978). 

The Euler-Newton continuation procedure breaks down when a simple limit point 
is encountered, essentially because the parameter R is no longer suitable for 
parametrizing the branch of solutions. I n  this case we use the pseudo arclength 
continuation method due to  Keller (1977). The basic idea is to parametrize the 
solution with an arclength-like parameter 5, so that we look for %(s), R(s) that  satisfy 

g(%, R )  = 0, (3.25) 

N(%, R , s )  = 0 ,  (3.26) 
where a% aR 

N ( @ ,  R,a) ,,(90)T(~(9)-~(ao))+~(~O) (R(s)-R(so))-(s-so).  (3.27) 

Euler-Newton continuation in s is applied to  (3.25) and (3.26). The method works 
because the Jacobian matrix of the enlarged system 

is non-singular, even at the simple limit point where ag/8% is singular (Keller 1977). 
Keller also describes methods for switching branches a t  two-sided bifurcation points. 

One method of solving two-parameter problems is to  apply the above one-parameter 
method for a discrete set of values of the second parameter, and then to repeat the 
exercise with the roles of the two parameters reversed. This technique has been used 
by Keller & Szeto (1980) to  study the problem of flow between rotating disks. 
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However, the structure of the solution surface is determined by the locus of 
bifurcation and limit points, and so i t  is only necessary to  calculate these if a 
qualitative picture of the possible flows is required. This is the procedure we adopt 
in the present work. It is particularly appropriate here since the experimental results 
of Benjamin & Mullin (1981) are in precisely this form. 

For fixed r, a set of equations 
points in the Taylor problem is 

that determine the symmetry-breaking bifurcation 

g+ Ay = 0, (3.28) 

(3.29) 

(3.30) 

yTy = 1. (3.31) 

This extended system was introduced by Moore (1980), and he showed that Newton’s 
method may be used to  solve i t  for 42, y ,  R, A. The parameter A is introduced for 
numerical convenience, since otherwise the system would be overdetermined. If the 
discrete problem has a bifurcation, as in the present case, the A calculated will be 
zero to  machine precision. We may write (3.28)-(3.31) in the form 

F ( V , r )  = 0, (3.32) 

where V = (@, y ,  R, A ) .  Equation (3.32) can then be solved as a single-parameter 
problem in r, by continuation methods. 

I n  order to  calculate the simple limit points appearing in the Taylor problem, we 
use the following extended system : 

g = 0, (3.33) 

(3.34) 

I ( # )  = 1. (3.35) 

Equation (3.35) is simply a convenient normalization condition on the right 
eigenvector of ag/a%. Again this system may be solved by Newton’s method (Moore 
& Spence 1980), and Euler-Newton continuation used to  find the variation of the 
limit points with r. 

4. Numerical results 
The region D was divided up into quadrilateral elements. A typical mesh is shown 

in figure 2. The meshes used were uniform in the r- and z-directions with the exception 
of the elements in the corners next to the inner cylinder. Local refinement of the type 
shown in figure 2 was used. The purpose of this refinement was to model the rapid 
variation in the azimuthal velocity component between the inner cylinder and the 
ends of the cylinders. The grids may be characterized by the triple (NR, NZ, NC), 
where NR and NZ are the number of elements in the r- and z-directions respectively, 
and the grid has 2NC-1 elements in each corner. The total number of degrees of 
freedom on such a grid is 3(2NR+1)(2NZ+1)+60(NCr-l)+3NR~NZ+12(NC-l) 
so that ( 5 , 5 , 5 )  and (10,10,5) grids have 726 and 191 1 freedoms respectively. Note that 
NC = 1 implies the grid to be uniform. It was found that, provided NC! was greater 
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Inner cylinder 

Outer cylinder 

FIGURE 2.  Typical finite-element grid of quadrilaterals used for the numerical calculations. 
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FICURE 3. Critical loci for single-cell mode: -, numerical predictions; + , experimental values 
for symnietry-breaking bifurcation points (from Benjamin & Mullin 1981) ; x , experimental values 
for simple limit points (one-sided bifurcation points) (from Benjamin & Mullin 1981). 

than about 4, further refinement only affected the flow close to the corners, and the 
critical Reynolds numbers were changed by a negligible amount. 

The principal results of this paper are shown in figure 3. The curve ABCD is the 
projection on the (R, 0-plane of the set of symmetry-breaking bifurcation points. The 
curve was produced by solving the Moore system (3.28)-(3.31) a t  about 20 different 
points along the curve. A cubic spline was fitted through the discrete values to give 
a continuous curve. All the points were calculated on the same (10,10,5) grid. The 



Numerical calculations of two-cell and single-cell Taylor $ow. 229 

Error in 
Critical Reynolds number (10,10,5) 

Aspect h = O  results 
ratio h = i  h = l  h = l  10 (extrapolated) ( Y o )  

0.67 ( A )  252.3 240.1 237.3 236.4 0.4 
1 .oo 156.8 152.7 152.1 151.9 0.1 
1.187 (D) 261.5 299.0 313.2 317.7 1.4 

TABLE 1. Variation of critical Reynolds number with grid size for three aspect ratios. 
Estimated error in (10, 10, 5) grid results is also shown. 

error in the critical Reynolds number for a given aspect ratio is less than 0.5 % along 
AC and less than 1.5% along CD. These errors were estimated using (3.19) and the 
results from (5,5,5),  (7 ,7 ,5)  and (10,10,5) grids. These values are given in table 1 for 
the most extreme points of the curve ABCD, where in fact the largest errors occur. 
The error along the curve near the minimum in critical Reynolds number is much 
smaller, being less than 0.2 %. 

The curve BE is the projection on the (R, 0-plane of the set of simple limit points. 
The points along this curve were calculated using the Moore-Spence system 
(3.33)-(3.38) on a (7,10,5) grid at about 10 different values of r. The error along this 
curve is about 1 % . The aspect ratio corresponding to point B (r = 1.235) marks the 
onset of hysteresis. 

Turning now to the experimental results (Benjamin & Mullin 1981), we see that 
there is good agreement along AB and BE between the experimental and numerically 
calculated points. The maximum discrepancy is less than loyo, and along most of 
the curve i t  is less than 5 ”/;. Along BD the agreement is not so good, the calculated 
values for the critical Reynolds numbers are about 30 yo higher than the experimental 
values. These errors are probably due in part to  the extreme steepness of the 
curve CD. 

The range of aspect ratios over which hysteresis was observed in the experiments 
is 1.16-1.24, which differs significantly from the calculated range (1.235-1.265). The 
reason for this discrepancy is not obvious; however, the effect is a fairly delicate one 
and it’ is possible that the aspect ratio corresponding to the point B is very sensitive 
to small changes in the experimental apparatus. We feel that  i t  is unlikely (unless 
there is some undetected error in the calculation) that  further grid refinement would 
produce better agreement with the experiments since the aspect ratio at B was 
monotonic increasing as the grid was refined. 

Figure 1 shows how the state diagram changes with aspect ratio in the range 
1.23-1 2 7 .  These diagrams were calculated using Euler-Newton and Keller arclength 
continuation methods, described in $3, to obtain the solution at various values of 
the Reynolds number. A spline fit to  the value of the vertical component of velocity 
a t  the point (0.75, 0) was used to  produce the continuous curves shown in the 
diagrams. Note that this velocity is zero for a solution having class (i) symmetry. 
The integers associated with the various branches were calculated in the manner 
described in $ 3. No appropriate experimental results are available for comparison 
with figure 1, but the form of diagrams is precisely that predicted by Benjamin & 
Mullin (1981). 

Finally, figure 4 shows the calculated streamline patterns for three distinct flows 
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(b  ) 

FIQURE 4. For caption see facing page. 
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FIGURE 4. Streamline patterns for three distinct flows at  Reynolds number 175 and aspect, ratio 
1.264. Equally spaced contours of the non-dimensional stream function are plotted. (a )  Stable 
two-cell flow, ( b )  unstable asymmetric flow, (c) stable ‘single-cell’ flow. 

with aspect ratio 1.264 and Reynolds number 175. Figure 4(a)  is the stable two-cell 
flow and 4(c)  is the stable single-cell flow. It is interesting to note that there are in 
fact two cells here, although the upper cell is very weak and in an experimental 
observation probably appears as a region of stagnant fluid. Figure 4(b) shows the 
asymmetric unstable flow which lies on the subcritical branch coming from the 
bifurcation of the two-cell flow (cf. figure l c ) .  This flow is not observable experi- 
mentally, of course, and it is interesting that its asymmetry is much less marked than 
that of the stable flow in figure 4(c) .  The reflections in the plane z = 0 of the flows 
in figures 4(b ,  c )  are also possible flows, though they are not shown here. 

5. Conclusions 
We have applied various numerical methods for solving nonlinear equations and 

bifurcation problems to a finite-element discretization of steady axisymmetric flow 
in the Taylor problem with realistic end conditions. The methods, though compara- 
tively recent, are now standard means of solving bifurcation problems numerically. 
Their application to the Taylor problem is new as far as is known and they have 
proved capable of giving both a qualitative and quantitative picture of the solution 
to the problem. Some of the effects examined, particularly the hysteresis effects, are 
extremely delicate but posed no great problem for the numerical methods employed. 
Recently Benjamin & Mullin (1982) speculated that profuse multiplicity in the Taylor 
problem is liable to complicate a numerical approach. While this statement is not 
disputed a tentative conclusion to be drawn from the present work is that methods 
similar to those employed here are powerful enough to resolve the complications and 
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give a complete description of the steady axisymmetric flows possible in the Taylor 
experiment for moderate aspect ratio. It should be emphasized, however, that  such 
an exercise is likely to need significant computer resources and the methods would 
not be suitable for attacking the general problem where unsteady non-axisymmetric 
flows must be considered. 

The numerical results obtained in this paper are in quite satisfactory quantitative 
agreement with those obtained by Benjamin & Mullin (1981) and, perhaps most 
significantly, the qualitative behaviour of the flow is confirmed to be precisely as 
proposed by Benjamin & Mullin (1981). 

The author is grateful to Dr T. Mullin for providing the experimental data used 
in figure 3 in tabulated form. 
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